Advertisements
Advertisements
Question
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
Solution
cos84° + cosec69° - cot68°
= cos(90° - 6°) + cosec(90° - 21°) - cot(90°- 22°)
= sin6° + sec21° - tan22°.
APPEARS IN
RELATED QUESTIONS
Solve for x : sin2 x + sin2 30° = 1
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
Find the value of 'x' in each of the following:
Find the value 'x', if:
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A