Advertisements
Advertisements
Question
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
Solution
tan θ = `"PQ"/"QS"`
⇒ `(5)/(13) = "h"/"QS"`
⇒ 5 x QS = 13h
⇒ 5(QR + RS) = 13h
⇒ 5(QR + 12) = 13h
⇒ QR + 12 = `(13"h")/(5)` ....(i)
tan α = `"PQ"/"QR"`
⇒ `(3)/(5) = "h"/"QR"`
⇒ 3 x QR = 5h
⇒ QR = `(5"h")/(3)` ....(ii)
Substituting (ii) in (i), we have
`(5"h")/(3) + 12 = (13"h")/(3)`
⇒ `(13"h")/(5) - (5"h")/(3)` = 12
⇒ `(39"h" - 25"h")/(15)` = 12
⇒ 14h = 180
⇒ h = 12.86m.
APPEARS IN
RELATED QUESTIONS
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Solve for x : sin2 x + sin2 30° = 1
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
Find the value 'x', if:
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
In the given figure, a rocket is fired vertically upwards from its launching pad P. It first rises 20 km vertically upwards and then 20 km at 60° to the vertical. PQ represents the first stage of the journey and QR the second. S is a point vertically below R on the horizontal level as P, find:
a. the height of the rocket when it is at point R.
b. the horizontal distance of point S from P.
Evaluate the following: sec16° tan28° - cot62° cosec74°
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`