Advertisements
Advertisements
Question
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Solution
`(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
= `(2sin(90° - 62°))/(cos62°) + (3cot(90° - 41°))/(tan41°)`
= `(2cos62°)/(cos62°) + (3tan41°)/(tan41°)`
= 2 + 3
= 5.
APPEARS IN
RELATED QUESTIONS
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Find the value of 'A', if 2 cos A = 1
Solve for 'θ': `sin θ/(3)` = 1
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If θ < 90°, find the value of: sin2θ + cos2θ
Find x and y, in each of the following figure:
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A