Advertisements
Advertisements
Question
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Solution
( sec 2A – 1) ( cosec 3A – 1) = 0
sec 2A – 1 = 0 and cosec 3A – 1 = 0
sec 2A = 1 and cosec 3A = 1
sec 2A = sec0° and cosec 3A = cosec90°
A = 0° and A = 30°
APPEARS IN
RELATED QUESTIONS
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
Solve for x : 2 cos 3x - 1 = 0
Solve the following equation for A, if 2 sin 3 A = 1
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
Find the value of 'A', if 2 sin 2A = 1
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
If P, Q and R are the interior angles of ΔPQR, prove that `cot(("Q" + "R")/2) = tan "P"/(2)`
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)