Advertisements
Advertisements
Question
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
Solution
L.H.S.
= tanθ tan(90° - θ)
= cot(90° - θ) x cotθ
= cotθ cot(90° - θ)
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
Solve for x : 2 cos 3x - 1 = 0
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
Solve for x : 2 cos (3x - 15°) = 1
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`