Advertisements
Advertisements
Question
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.
Solution
secθ= cosec30°
⇒ secθ = 2
⇒ secθ = sec60°
⇒ θ = 60°
Now,
4sin2θ - 2cos2θ
= 4sin260° - 2cos260°
= `4 xx (sqrt(3)/2)^2 - 2 xx (1/2)^2`
= `4 xx (3)/(4) - 2 xx (1)/(4)`
= `3 - (1)/(2)`
= `(6 - 1)/(2)`
= `(5)/(2)`.
APPEARS IN
RELATED QUESTIONS
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Find the value 'x', if:
Find the value 'x', if:
Find x and y, in each of the following figure:
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ