Advertisements
Advertisements
Question
Find x and y, in each of the following figure:
Solution
In right ΔABC,
tan30° = `"BC"/"AB"`
⇒ `(1)/sqrt(3) = x/(24 + y)` ....(i)
In right ΔDBC,
tan60° = `"BC"/"DB"`
⇒ `sqrt(3) = x/y`
⇒ x = `sqrt(3)y`
Substituting the value of x in (i), we get
`(1)/sqrt(3) = sqrt(3)/(24 + y)`
⇒ 24 + y = 3y
⇒ 2y = 24
⇒ y = 12cm
⇒ x = `sqrt(3) xx 12 = 12sqrt(3)"cm"`.
APPEARS IN
RELATED QUESTIONS
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos 3θ
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
In the given figure, a rocket is fired vertically upwards from its launching pad P. It first rises 20 km vertically upwards and then 20 km at 60° to the vertical. PQ represents the first stage of the journey and QR the second. S is a point vertically below R on the horizontal level as P, find:
a. the height of the rocket when it is at point R.
b. the horizontal distance of point S from P.
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.