Advertisements
Advertisements
Question
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
Solution
(i) tan θ° = `(5)/(5) = 1`
(ii) tan θ° = 1
tan θ° = tan 45°
θ° = 45°
(iii) sin2θ° – cos2θ° = sin245° – cos2 45°
= `(1/sqrt2)^2 – (1/sqrt2)^2`
= 0
(iv) sinθ° = `(5)/(x)`
sin 45° = `(5)/(x)`
x = `(5)/(sin45°)`
x = `(5)/(1/sqrt2)`
x = 5`sqrt2`
APPEARS IN
RELATED QUESTIONS
If sin 3A = 1 and 0 < A < 90°, find sin A
Solve the following equation for A, if sec 2A = 2
Solve for x : sin2 x + sin2 30° = 1
Find the value of 'A', if 2 cos A = 1
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
Find the value of 'x' in each of the following:
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ