Advertisements
Advertisements
Question
If θ < 90°, find the value of: sin2θ + cos2θ
Solution
Since θ <90°,
Consider θ = 45°
∴ sin2 + cos2
= sin245° + cos245°
= `(1/sqrt(2))^2 + (1/sqrt(2))^2`
= `(1)/(2) + (1)/(2)`
= 1.
APPEARS IN
RELATED QUESTIONS
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
Solve the following equation for A, if sec 2A = 2
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Find x and y, in each of the following figure:
Evaluate the following: sin28° sec62° + tan49° tan41°
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`