Advertisements
Advertisements
Question
Evaluate the following: sin28° sec62° + tan49° tan41°
Solution
sin28° sec62° + tan49° tan41°
= sin28° sec(90° - 28°) + tan49° tan(90° - 49°)
= sin28° cosec28° + tan49° cot49°
= `sin28° xx (1)/(sin28°) + tan49° xx (1)/(tan49°)`
= 1 + 1
= 2.
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether sin θ increases or decreases as θ increases
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve the following equation for A, if 2 sin A = 1
Solve for x : cos `(x)/(3) –1` = 0
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°