Advertisements
Advertisements
Question
Evaluate the following: sec16° tan28° - cot62° cosec74°
Solution
sec16° tan28° - cot62° cosec74°
= sec(90° - 74°)tan(90° - 62°) - cot62° cosec74°
= cosec74° cot62° - cot62° cosec74°
= 0
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether sin θ increases or decreases as θ increases
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
Find the value of 'A', if 2cos 3A = 1
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)