Advertisements
Advertisements
Question
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Solution
`(cos34° cos35°)/(sin57° sin56°)`
= `(cos(90° - 56°) cos(90° - 57°))/(sin57° sin56°)`
= `(sin56° sin57°)/(sin57° sin56°)`
= 1.
APPEARS IN
RELATED QUESTIONS
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Evaluate the following: `(5sec68°)/("cosec"22°) + (3sin52° sec38°)/(cot51° cot39°)`
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`