Advertisements
Advertisements
प्रश्न
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
उत्तर
`(cos34° cos35°)/(sin57° sin56°)`
= `(cos(90° - 56°) cos(90° - 57°))/(sin57° sin56°)`
= `(sin56° sin57°)/(sin57° sin56°)`
= 1.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if sin 3 A = `sqrt3 /2`
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
Find the value 'x', if:
Evaluate the following: sin31° - cos59°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.