Advertisements
Advertisements
प्रश्न
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
उत्तर
∠B = 60°
∠C = 90° ...(Since triangle ABC is right angled at C)
∠A + ∠B + ∠C = 180°
∠A + 60° + 90° =180°
∠A = 180° - 150°
∠A = 30°
Now,
sin60° = `"AC"/"AB"`
AC = sin60° x AB
AC = `sqrt(3)/(2) xx 15`
AC = `(15sqrt(3))/(2)"units"`
Also,
cos60° = `"BC"/"AB"`
BC = cos60° x AB
BC = `(1)/(2) xx 15`
BC = 7.5units.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
Find the value of 'A', if `sqrt(3)cot"A"` = 1
Solve for 'θ': `sin θ/(3)` = 1
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
Find:
a. BC
b. AD
c. AC
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`