Advertisements
Advertisements
प्रश्न
Find:
a. BC
b. AD
c. AC
उत्तर
a. In right ΔABC,
tan30° = `"AB"/"BC"`
⇒ `(1)/sqrt(3) = (10)/"BC"`
⇒ BC = `10sqrt(3)"cm"`.
b. In ΔABC, ∠C = 30° and ∠B = 90°
⇒ ∠A = 60°
Now, In ΔABD,
cos60° = `"AD"/"AB"`
⇒ `(1)/(2) = "AD"/(10)`
⇒ AD = 5cm
c. In ΔABC,
AC2
= AB2 + BC2
= `10^2 + (10sqrt(30))^2`
= 100 + 300
= 400cm
⇒ AC = 20cm.
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
If θ < 90°, find the value of: sin2θ + cos2θ
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
If P, Q and R are the interior angles of ΔPQR, prove that `cot(("Q" + "R")/2) = tan "P"/(2)`