Advertisements
Advertisements
प्रश्न
Find:
a. BC
b. AD
c. AC
उत्तर
a. In right ΔABC,
tan30° = `"AB"/"BC"`
⇒ `(1)/sqrt(3) = (10)/"BC"`
⇒ BC = `10sqrt(3)"cm"`.
b. In ΔABC, ∠C = 30° and ∠B = 90°
⇒ ∠A = 60°
Now, In ΔABD,
cos60° = `"AD"/"AB"`
⇒ `(1)/(2) = "AD"/(10)`
⇒ AD = 5cm
c. In ΔABC,
AC2
= AB2 + BC2
= `10^2 + (10sqrt(30))^2`
= 100 + 300
= 400cm
⇒ AC = 20cm.
APPEARS IN
संबंधित प्रश्न
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
Solve for x : cos `(x)/(3) –1` = 0
Solve for x : 2 cos (3x - 15°) = 1
Find the value of 'A', if 2 sin 2A = 1
Solve for 'θ': `sin θ/(3)` = 1
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
Evaluate the following: cosec 54° - sec 36°
Evaluate the following: sin22° cos44° - sin46° cos68°