Advertisements
Advertisements
प्रश्न
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
उत्तर
In right ΔABC,
tan45° = `"AB"/"BC"`
⇒ 1 = `(24)/"BC"`
⇒ BC = 24m.
In right ΔABD,
tan 30° = `"AB"/"BD"`
⇒ `(1)/sqrt(3) = (24)/"BD"`
⇒ BD = `24sqrt(3)"m"`
Now,
CD = BD - BC
= `24sqrt(3) - 24`
= `24(sqrt(3) - 1)"m"`.
APPEARS IN
संबंधित प्रश्न
Solve for x : 2 cos 3x - 1 = 0
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
Find:
a. BC
b. AD
c. AC
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: `(5sec68°)/("cosec"22°) + (3sin52° sec38°)/(cot51° cot39°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin65° + cot59°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)