Advertisements
Advertisements
Question
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
Solution
In right ΔABC,
tan45° = `"AB"/"BC"`
⇒ 1 = `(24)/"BC"`
⇒ BC = 24m.
In right ΔABD,
tan 30° = `"AB"/"BD"`
⇒ `(1)/sqrt(3) = (24)/"BD"`
⇒ BD = `24sqrt(3)"m"`
Now,
CD = BD - BC
= `24sqrt(3) - 24`
= `24(sqrt(3) - 1)"m"`.
APPEARS IN
RELATED QUESTIONS
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
Find the value of 'x' in each of the following:
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
Evaluate the following: cot27° - tan63°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°