Advertisements
Advertisements
Question
Evaluate the following: cot27° - tan63°
Solution
cot27° - tan63°
= cot(90° - 63°) - tan63°
= tan63° - tan63°
= 0.
APPEARS IN
RELATED QUESTIONS
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
Solve for x : sin (x + 10°) = `(1)/(2)`
Find the value of 'A', if 2 cos A = 1
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Find the value 'x', if:
Evaluate the following: cos39° cos48° cos60° cosec42° cosec51°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.