Advertisements
Advertisements
Question
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
Solution
`(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
= `(3sin(90° - 53°))/(cos53°) - (5"cosec"(90° - 51°))/(sec51°) + (4tan(90° - 67°) tan(90° - 53°) xx 1/(cot67°) xx 1/(cot53°))/(cos(90° - 73°) cos(90° - 23°) xx 1/(sin73°) xx 1/(sin23°)`
= `(3cos53°)/(cos53°) - (5sec51°)/(sec51°) + (4 cos67° cos53° xx 1/(cot67°) xx 1/cot53°)/(sin73° sin23° xx 1/(sin73°) xx 1/sin23°)`
= 3 - 5 + 4
= 2.
APPEARS IN
RELATED QUESTIONS
If sin 3A = 1 and 0 < A < 90°, find cos 2A
Solve for x : sin (x + 10°) = `(1)/(2)`
Solve for x : cos2 30° + sin2 2x = 1
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Evaluate the following: sin28° sec62° + tan49° tan41°
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ