Advertisements
Advertisements
Question
Evaluate the following: cos39° cos48° cos60° cosec42° cosec51°
Solution
cos39° cos48° cos60° cosec42° cosec51°
= `cos(90° - 51°) xx cos(90° - 42°) xx (1)/(2) xx (1)/(sin42°) xx (1)/(sin51°)`
= `sin51° xx sin42° xx (1)/(2) xx (1)/(sin42°) xx (1)/(sin51°)`
= `(1)/(2)`.
APPEARS IN
RELATED QUESTIONS
Solve for x : 2 cos 3x - 1 = 0
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Find the value of 'A', if `sqrt(3)cot"A"` = 1
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
In a trapezium ABCD, as shown, AB ‖ DC, AD = DC = BC = 24 cm and ∠A = 30°. Find: length of AB
Find the value 'x', if:
Find the value 'x', if:
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
Evaluate the following: cot20° cot40° cot45° cot50° cot70°
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ