Advertisements
Advertisements
Question
Find the value of 'A', if `sqrt(3)cot"A"` = 1
Solution
`sqrt(3)cot"A"` = 1
⇒ cot A = `(1)/sqrt(3)`
⇒ cot A = cot60°
⇒ A = 60°.
APPEARS IN
RELATED QUESTIONS
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Solve for x : 2 cos (3x - 15°) = 1
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: cosec 54° - sec 36°
If P, Q and R are the interior angles of ΔPQR, prove that `cot(("Q" + "R")/2) = tan "P"/(2)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ
Prove the following: sin58° sec32° + cos58° cosec32° = 2