Advertisements
Advertisements
प्रश्न
Find the value of 'A', if `sqrt(3)cot"A"` = 1
उत्तर
`sqrt(3)cot"A"` = 1
⇒ cot A = `(1)/sqrt(3)`
⇒ cot A = cot60°
⇒ A = 60°.
APPEARS IN
संबंधित प्रश्न
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
Solve for x : cos `(x)/(3) –1` = 0
Find the value of 'A', if 2 cos A = 1
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`