Advertisements
Advertisements
प्रश्न
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
उत्तर
a cosθ = `"Base"/"Hypotenuse"`
⇒ cosθ
= `"PQ"/"PR"`
= `(6)/(10)`
= `(3)/(5)`
b. sin2θ + cos2θ = 1
⇒ `sin^2θ + (3/5)^2` = 1
⇒ `sin^2θ + (9)/(25)` = 1
⇒ sin2θ = `1 - (9)/(25) = (16)/(25)`
⇒ sinθ = `(4)/(5)`
∴ sin2θ - cos2θ
= `(6)/(25) - (9)/(5)`
= `(7)/(25)`
c. tanθ
= `(sinθ)/(cosθ)`
= `(4/5)/(3/5)`
= `(4)/(3)`
But,
tanθ = `"Perpendicular"/"Base" = "RQ"/"PQ"`
⇒ `"RQ"/"PQ" = (4)/(3)`
⇒ `"RQ"/(6) = (4)/(3)`
⇒ RQ
= `(4 xx 6)/(3)`
= 8cm.
APPEARS IN
संबंधित प्रश्न
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
Prove the following: sin58° sec32° + cos58° cosec32° = 2