Advertisements
Advertisements
प्रश्न
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
उत्तर
`(tan42°)/(cot48°) + (cos33°)/(sin57°)`
= `(tan(90° - 48°))/(cot48°) - (cos(90° - 57°))/(sin57°)`
= `(cot48°)/(cot48°) - (sin57°)/(sin57°)`
= 1 - 1
= 0.
APPEARS IN
संबंधित प्रश्न
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
Solve for x : cos `(x)/(3) –1` = 0
Solve for x : tan2 (x - 5°) = 3
Solve for x : cos2 30° + sin2 2x = 1
Find the value of 'A', if 2cos 3A = 1
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Evaluate the following: sec16° tan28° - cot62° cosec74°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°