Advertisements
Advertisements
प्रश्न
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
उत्तर
( cosec 2A – 2) (cot 3A – 1) = 0
cosec 2A – 2 = 0 and cot 3A – 1 = 0
cosec 2A = 2 and cot 3A = 1
cosec 2A = cosec 30° and cot 3A = cot 45°
2A = 30° and 3A = 45°
A = 15° and A = 15°
APPEARS IN
संबंधित प्रश्न
Solve for x : tan2 (x - 5°) = 3
Find the value of 'A', if 2 sin 2A = 1
Find the value of 'A', if `sqrt(3)cot"A"` = 1
Find the value of 'A', if cot 3A = 1
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
Evaluate the following: `(tan12°)/(cot78°)`
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`