Advertisements
Advertisements
Question
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
Solution
( cosec 2A – 2) (cot 3A – 1) = 0
cosec 2A – 2 = 0 and cot 3A – 1 = 0
cosec 2A = 2 and cot 3A = 1
cosec 2A = cosec 30° and cot 3A = cot 45°
2A = 30° and 3A = 45°
A = 15° and A = 15°
APPEARS IN
RELATED QUESTIONS
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
Solve for x : sin (x + 10°) = `(1)/(2)`
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
Evaluate the following: cos39° cos48° cos60° cosec42° cosec51°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`