Advertisements
Advertisements
Question
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
Solution
(i) 2 sin x° – 1 = 0
∴ sin x° = `(1)/(2)`
(ii) sin x° = `(1)/(2)`
sin x° = sin 30°
∴ x° = 30°
(iii) cos x° = cos 30° = `(sqrt3)/2`
tax x° = tan 30° = `(1)/(sqrt3)`
APPEARS IN
RELATED QUESTIONS
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
If sin x + cos y = 1 and x = 30°, find the value of y
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
Solve for x : tan2 (x - 5°) = 3
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`