Advertisements
Advertisements
प्रश्न
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
उत्तर
cos 3A (2 sin 2A – 1) = 0
cos 3A = 0 and 2 sin 2A – 1 = 0
cos 3A = cos90° and 2 sin 2A = 1
3A = 90° and sin 2A = `(1)/(2)`
A = 30° and sin 2A = sin 30°
A = 30°
2A = 30°
⇒ A = 15°
APPEARS IN
संबंधित प्रश्न
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
Solve for x : 2 cos 3x - 1 = 0
Solve for x : sin (x + 10°) = `(1)/(2)`
Find the value of 'A', if 2 cos A = 1
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ