Advertisements
Advertisements
प्रश्न
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
उत्तर
(i) 2 cos 2A = `sqrt3`
cos 2A = `(sqrt3)/(2)`
cos 2A = cos 30°
2A = 30°
A = 15°
(ii) sin 3A = sin 3(15°)
= sin 45°
= `(1)/(sqrt2)`
(iii) sin2(75° – A ) + cos2 (45 + A) = sin2 ( 75° –15°) + (cos2 ( 45° + 15°)
= sin2 60° + cos2 60°
= `(sqrt3/2)^2 + (1/2)^2`
= `(3)/(4) + (1)/(4)`
= 1
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2 sin A = 1
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Solve for x : cos (2x - 30°) = 0
Solve for x : cos2 30° + cos2 x = 1
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
Evaluate the following: sin22° cos44° - sin46° cos68°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ