Advertisements
Advertisements
प्रश्न
Solve the following equation for A, if 2 sin A = 1
उत्तर
2 sin A = 1
sin A = `(1)/(2)`
sin A = sin 30°
A = 30°
APPEARS IN
संबंधित प्रश्न
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solve for x : cos2 30° + cos2 x = 1
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos 3θ
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)