Advertisements
Advertisements
प्रश्न
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
उत्तर
θ = 15°
`(3)/(2)cos3θ - sin6θ + 3sin(5θ + 15°) - 2tan^2 3θ`
= `(3)/(2)cos 3 xx 15° - sin6 xx 15° + 3sin(5 xx 15° + 15°) -2tan^2 3 xx 15°`
= `(3)/(2)cos45° - sin90° + 3sin90° - 2tan^2 45°`
= `(3)/(2) xx (1)/sqrt(2) - 1 + 3 xx 1 - 2 xx (1)^2`
= `(3)/(2sqrt(2)) - 1 + 3 - 2`
= `(3)/(2sqrt(2))`
= `(3)/(2sqrt(2)) xx sqrt(2)/sqrt(2)`
= `(3sqrt(2))/(4)`.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2 sin 3 A = 1
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Evaluate the following: sin22° cos44° - sin46° cos68°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°