Advertisements
Advertisements
प्रश्न
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
उत्तर
`sqrt((1 - sin^2 60°)/(1 + sin^2 60°)`
= `sqrt((1 - (sqrt(3)/2)^2)/(1 + (sqrt(3)/2)^2`
= `sqrt((1 - 3/4)/(1 + 3/4)`
= `sqrt((1/4)/(7/4)`
= `sqrt(1/7)`
= `(1)/sqrt(7)`
3tan2θ - 1 = 0
⇒ 3tan2θ = 1
⇒ tan2θ = `(1)/(3)`
⇒ tanθ = `(1)/sqrt(3)`
⇒ tanθ = tan30°
⇒ θ = 30°
a. cos2θ
= cos2 x 30°
= cos60°
= `(1)/(2)`
b. sin3θ
= sin3 x 30°
= sin90°
= 1.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Find the magnitude of angle A, if 2 cos2 A - 3 cos A + 1 = 0
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
Find the value of 'x' in each of the following:
Find x and y, in each of the following figure:
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: cot20° cot40° cot45° cot50° cot70°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`