Advertisements
Advertisements
Question
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Solution
`sqrt((1 - sin^2 60°)/(1 + sin^2 60°)`
= `sqrt((1 - (sqrt(3)/2)^2)/(1 + (sqrt(3)/2)^2`
= `sqrt((1 - 3/4)/(1 + 3/4)`
= `sqrt((1/4)/(7/4)`
= `sqrt(1/7)`
= `(1)/sqrt(7)`
3tan2θ - 1 = 0
⇒ 3tan2θ = 1
⇒ tan2θ = `(1)/(3)`
⇒ tanθ = `(1)/sqrt(3)`
⇒ tanθ = tan30°
⇒ θ = 30°
a. cos2θ
= cos2 x 30°
= cos60°
= `(1)/(2)`
b. sin3θ
= sin3 x 30°
= sin90°
= 1.
APPEARS IN
RELATED QUESTIONS
Solve the following equation for A, if tan 3 A = 1
Solve the following equation for A, if 2 sin 3 A = 1
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
Find the value 'x', if:
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
A ladder is placed against a vertical tower. If the ladder makes an angle of 30° with the ground and reaches upto a height of 18 m of the tower; find length of the ladder.
Evaluate the following: sin28° sec62° + tan49° tan41°
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`