Advertisements
Advertisements
प्रश्न
Find the magnitude of angle A, if 2 cos2 A - 3 cos A + 1 = 0
उत्तर
2 cos2 A – 3 cos A + 1 = 0
2 cos2 A – cos A - 2cosA +1 = 0
cos A(2cos A – 1) – (2 cos A – 1) = 0
( 2 cosA – 1) (cos A – 1) = 0
2 cos A – 1 = 0 aand cos A – 1 = 0
cos A = `(1)/(2)` and cos A = 1
A = 60° and A = 0°
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2 sin 3 A = 1
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Solve for x : sin (x + 10°) = `(1)/(2)`
Solve for x : 2 cos (3x - 15°) = 1
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Evaluate the following: `(5sec68°)/("cosec"22°) + (3sin52° sec38°)/(cot51° cot39°)`
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.