Advertisements
Advertisements
प्रश्न
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
उत्तर
Given: θ = 30°
1 - sin2θ
= 1 - sin2 x 30°
= 1 - sin60°
= `1 - sqrt(3)/(2)`
= `(2 - sqrt(3))/(2)`
(sinθ - cosθ)2
= sin2θ + cos2θ - 2sinθ cosθ
= 1 - 2 x sin30° x cos30
= `1 - 2 xx (1)/(2) xx sqrt(3)/(2)`
= `1 - sqrt(3)/(2)`
= `(2 - sqrt(3))/(2)`
⇒ 1 - sin2θ = (sinθ - cosθ)2.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
Find the value 'x', if:
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
Evaluate the following: sin31° - cos59°
Evaluate the following: sec16° tan28° - cot62° cosec74°