Advertisements
Advertisements
प्रश्न
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
उत्तर
2θ = 30°
⇒ θ = 15°
∴ `(sin3θ - 2sin4θ)/(cos3θ - 2cos4θ)`
= `(sin3 xx 15° - 2sin4 xx 15°)/(cos3 xx 15° - 2cos"4 xx 15°)`
= `"(sin45° - 2sin60°)/(cos45° - 2cos60°)`
= `(1/sqrt(2) - 2 xx sqrt(3)/(2))/((1)/sqrt(2) - 2 xx (1)/(2))`
= `(1/sqrt(2) - sqrt(3))/(1/sqrt(2) - 1)`
= `((1 - sqrt(6))/(sqrt(2)))/((1 - sqrt(2))/(sqrt(2)`
= `(1 - sqrt(6))/(1 - sqrt(2))`
= `(1 - sqrt(6))/(1 - sqrt(2)) xx (1 + sqrt(2))/(1 + sqrt(2)`
= `(1 + sqrt(2) - sqrt(6) - sqrt12)/(1 - 2)`
= `(1 + sqrt(2) - sqrt(6) - 2sqrt(3))/(-1)`
= `2sqrt(3) + sqrt(6) - sqrt(2) - 1`.
APPEARS IN
संबंधित प्रश्न
If sin x + cos y = 1 and x = 30°, find the value of y
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
Evaluate the following: sin31° - cos59°
Evaluate the following: cot20° cot40° cot45° cot50° cot70°
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`