Advertisements
Advertisements
प्रश्न
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`
उत्तर
Since A, B and C are interior angles of ΔABC,
A + B + C = 180°
⇒ A + B = 180° - C
Now,
L.H.S. = `sin (("A" + "B")/2)`
= `sin ((180° - "C")/2)`
= `sin(90° - "C"/2)`
= `cos "C"/(2)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Solve for x : 2 cos 3x - 1 = 0
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Find the value of 'A', if 2 sin 2A = 1
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
In the given figure, a rocket is fired vertically upwards from its launching pad P. It first rises 20 km vertically upwards and then 20 km at 60° to the vertical. PQ represents the first stage of the journey and QR the second. S is a point vertically below R on the horizontal level as P, find:
a. the height of the rocket when it is at point R.
b. the horizontal distance of point S from P.
Evaluate the following: sin31° - cos59°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.