Advertisements
Advertisements
प्रश्न
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
उत्तर
2tan 3A cos 3A – tan 3A + 1 = 2 cos 3A
2 tan 3A cos 3A – tan 3A = 2 cos 3A – 1
tan 3A (2 cos 3A – 1) = 2 cos 3A – 1
(2 cos 3A – 1)(tan 3A – 1) = 0
2 cos 3A – 1 = 0 and tan 3A – 1 = 0
cos 3A = `(1)/(2)` and tan 3A = 1
3A = 60° and 3A = 45°
A = 20° and A = 15°
APPEARS IN
संबंधित प्रश्न
If sin x + cos y = 1 and x = 30°, find the value of y
Solve the following equation for A, if `sqrt3` cot 2 A = 1
Solve for x : sin2 x + sin2 30° = 1
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
Find x and y, in each of the following figure:
Evaluate the following: cot27° - tan63°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`