Advertisements
Advertisements
प्रश्न
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
उत्तर
2tan 3A cos 3A – tan 3A + 1 = 2 cos 3A
2 tan 3A cos 3A – tan 3A = 2 cos 3A – 1
tan 3A (2 cos 3A – 1) = 2 cos 3A – 1
(2 cos 3A – 1)(tan 3A – 1) = 0
2 cos 3A – 1 = 0 and tan 3A – 1 = 0
cos 3A = `(1)/(2)` and tan 3A = 1
3A = 60° and 3A = 45°
A = 20° and A = 15°
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
Solve for x : 2 cos 3x - 1 = 0
Solve the following equation for A, if 2 sin 3 A = 1
Solve for x : cos2 30° + sin2 2x = 1
Find the value of 'A', if cot 3A = 1
Find the value of 'x' in each of the following:
Evaluate the following: `(tan12°)/(cot78°)`
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.