हिंदी

Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A - Mathematics

Advertisements
Advertisements

प्रश्न

Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A

योग

उत्तर

2tan 3A cos 3A –  tan 3A + 1 = 2 cos 3A
2 tan 3A cos 3A –  tan 3A = 2 cos 3A –  1
tan 3A (2 cos 3A –  1) = 2 cos 3A –  1
(2 cos 3A –  1)(tan 3A –  1) = 0
 2 cos 3A –  1 = 0 and tan 3A –  1 = 0
cos 3A = `(1)/(2)` and tan 3A = 1
3A = 60° and 3A = 45°
A = 20° and A = 15°

shaalaa.com
Trigonometric Equation Problem and Solution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (C) [पृष्ठ २९८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (C) | Q 11.4 | पृष्ठ २९८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×