Advertisements
Advertisements
प्रश्न
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.
उत्तर
tan4θ = cot(θ + 20°)
⇒ cot(90° - 4θ) = cot(θ + 20°)
⇒ 90° - 4θ= θ+ 20°
⇒ 5θ = 70°
⇒ θ = 14°.
APPEARS IN
संबंधित प्रश्न
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Solve for x : cos `(x)/(3) –1` = 0
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
In a rectangle ABCD, AB = 20cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
Evaluate the following: `(sin0° sin35° sin55° sin75°)/(cos22° cos64° cos58° cos90°)`
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A