Advertisements
Advertisements
प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
उत्तर
cos72° - cos88°
= cos(90° - 18°) - cos(90° - 2°)
= sin18° - sin2°.
APPEARS IN
संबंधित प्रश्न
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Solve for x : 2 cos (3x - 15°) = 1
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: cot27° - tan63°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin65° + cot59°
If P, Q and R are the interior angles of ΔPQR, prove that `cot(("Q" + "R")/2) = tan "P"/(2)`