Advertisements
Advertisements
प्रश्न
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
उत्तर
Since θ <90°,
Consider θ = 45°
∴ `tan^2 θ - (1)/cos^2θ`
= `tan^2 45° - (1)/(cos^2 45°)`
= `(1)^2 - (1)/(1/sqrt(2))^2`
= `1 - (1)/(1/2)`
= 1 - 2
= -1.
APPEARS IN
संबंधित प्रश्न
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Solve the following equation for A, if 2 sin A = 1
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
If sin 3A = 1 and 0 < A < 90°, find cos 2A
Find the value of 'A', if cosec 3A = `(2)/sqrt(3)`
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ