Advertisements
Advertisements
प्रश्न
If θ < 90°, find the value of: sin2θ + cos2θ
उत्तर
Since θ <90°,
Consider θ = 45°
∴ sin2 + cos2
= sin245° + cos245°
= `(1/sqrt(2))^2 + (1/sqrt(2))^2`
= `(1)/(2) + (1)/(2)`
= 1.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2cos2A = 1
Solve the following equation for A, if tan 3 A = 1
Solve the following equation for A, if `sqrt3` cot 2 A = 1
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Find the value of 'A', if 2 cos A = 1
Find the value of 'A', if 2 sin 2A = 1
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin65° + cot59°
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`