मराठी

If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.

बेरीज

उत्तर

Let A = 45° and B = 30°
Then,
sin(A - B) = sinA cosB - cosA sinB
⇒ sin45° - 30°) = sin45° cos30° - cos45° sin30°

⇒ sin15° = `(1)/sqrt(2) xx sqrt(3)/(2) - (1)/sqrt(2) xx (1)/sqrt(2)`

⇒ sin15° = `sqrt(3)/(2sqrt(2)) - (1)/(2sqrt(2)`

⇒ sin15° = `((sqrt(3) - 1))/(2sqrt(2)`
cos(A -B) = cosA cosB + sinA sinB
⇒ cos(45° - 30°) = cos45° cos30° + sin45° sin30°

⇒ cos15° = `(1)/sqrt(2) xx sqrt(3)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`

⇒ cos15° = `sqrt(3)/(2sqrt(2)) + (1)/(2sqrt(2)`

⇒ cos15° = `((sqrt(3) + 1))/(2sqrt(2)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 18

संबंधित प्रश्‍न

Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: `sin 18^@/cos 72^@  + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


If sin x = cos x and x is acute, state the value of x


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


For any angle θ, state the value of: sin2 θ + cos2 θ


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


Verify cos3A = 4cos3A – 3cosA, when A = 30°


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×