Advertisements
Advertisements
प्रश्न
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
उत्तर
Let A = 45° and B = 30°
Then,
sin(A - B) = sinA cosB - cosA sinB
⇒ sin45° - 30°) = sin45° cos30° - cos45° sin30°
⇒ sin15° = `(1)/sqrt(2) xx sqrt(3)/(2) - (1)/sqrt(2) xx (1)/sqrt(2)`
⇒ sin15° = `sqrt(3)/(2sqrt(2)) - (1)/(2sqrt(2)`
⇒ sin15° = `((sqrt(3) - 1))/(2sqrt(2)`
cos(A -B) = cosA cosB + sinA sinB
⇒ cos(45° - 30°) = cos45° cos30° + sin45° sin30°
⇒ cos15° = `(1)/sqrt(2) xx sqrt(3)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
⇒ cos15° = `sqrt(3)/(2sqrt(2)) + (1)/(2sqrt(2)`
⇒ cos15° = `((sqrt(3) + 1))/(2sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If sin x = cos x and x is acute, state the value of x
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
For any angle θ, state the value of: sin2 θ + cos2 θ
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify cos3A = 4cos3A – 3cosA, when A = 30°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
Evaluate: sin2 60° + 2tan 45° – cos2 30°.