Advertisements
Advertisements
प्रश्न
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
sin θ = cos θ for all values of θ.
This is true when θ = 45°
As
`sin 45° = 1/sqrt2`
`cos 45° = 1/sqrt2`
It is not true for all other values of θ.
As sin 30° = `1/2` and cos 30° = `sqrt3/2`
APPEARS IN
संबंधित प्रश्न
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cosec2 45° - cot2 45° = 1
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If sin 30° = x and cos 60° = y, then x2 + y2 is
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`