Advertisements
Advertisements
प्रश्न
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
उत्तर
cos 90° = 0, sin 45° = `1/sqrt(2)`, cos 45° = `1/sqrt(2)`
cos 90° = 0 ...(1)
1 – 2 sin2 45° = `1 - 2(1/sqrt(2))^2`
= `1 - 2 xx 1/2`
= 1 – 1 = 0 → (2)
2 cos2 45° – 1 = `2(1/sqrt(2))^2 - 1`
= `2/2 - 1`
= `(2 - 2)/2`
= 0 → (3)
From (1), (2) and (3) we get
cos 90° = 1 – 2 sin2 45° = 2 cos2 45° – 1
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`