मराठी

If A = 30o, then prove that : 2 cos2 A - 1 = 1 - 2 sin2A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A

बेरीज

उत्तर

Given A = 30°

2 cos2 A – 1 = 2 cos2 30° – 1

=`2(3/4) – 1`

= `(3)/(2) – 1`

= `(1)/(2)`

1 - 2 sin2A = 1 - 2 sin2 30°

= 1 - 2`(1/4)`

= `1/2`

∴ 2 cos2A – 1 = 1 – 2 sin2A

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 2.3 | पृष्ठ २९३

संबंधित प्रश्‍न

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate tan 35° tan 40° tan 50° tan 55°


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Prove that

tan (55° − θ) − cot (35° + θ) = 0


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Find the value of x in the following: `2sin  x/(2)` = 1


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×