Advertisements
Advertisements
प्रश्न
Evaluate the following
`sec 11^@/(cosec 79^@)`
उत्तर
Given that `sec 11^@/(cosec 79^@)`
Since `sec(90 - theta) = cosec theta`
`=> sec 11/(cosec 79) = (sec (90 - 79))/(cosec 79)`
`=> sec 11/(cosec 79) = (cosec 79)/(cosec 79)`
`=> sec 11/(cosec 79) = 1`
Therefore `sec 11/(cosec 79) = 1`
APPEARS IN
संबंधित प्रश्न
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
find the value of: cos2 60° + sec2 30° + tan2 45°
Prove that:
cosec2 45° - cot2 45° = 1
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`