मराठी

RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios - Shaalaa.com
Advertisements

Solutions for Chapter 10: Trigonometric Ratios

Below listed, you can find solutions for Chapter 10 of CBSE RD Sharma for Mathematics [English] Class 10.


Exercise 10.1Exercise 10.2Exercise 10.3Exercise 10.4Exercise 10.5
Exercise 10.1 [Pages 23 - 26]

RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.1 [Pages 23 - 26]

Exercise 10.1 | Q 1.01 | Page 23

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin A = 2/3`

Exercise 10.1 | Q 1.02 | Page 23

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos A = 4/5`

Exercise 10.1 | Q 1.03 | Page 23

In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

tan θ = 11

Exercise 10.1 | Q 1.04 | Page 23

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin theta = 11/5`

Exercise 10.1 | Q 1.05 | Page 23

In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`tan alpha = 5/12`

Exercise 10.1 | Q 1.06 | Page 23

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin theta = sqrt3/2`

Exercise 10.1 | Q 1.07 | Page 23

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos theta = 7/25`

Exercise 10.1 | Q 1.08 | Page 23

In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`tan theta = 8/15`

Exercise 10.1 | Q 1.09 | Page 23

In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`cot theta = 12/5`

Exercise 10.1 | Q 1.1 | Page 23

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sec theta = 13/5`

Exercise 10.1 | Q 1.11 | Page 23

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cosec theta = sqrt10`

Exercise 10.1 | Q 1.12 | Page 23

In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`cos theta = 12/2`

Exercise 10.1 | Q 2 .1 | Page 23

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:

sin A, cos A

Exercise 10.1 | Q 2 .2 | Page 23

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:

sin C, cos C

Exercise 10.1 | Q 3 | Page 23

In Fig below, Find tan P and cot R. Is tan P = cot R?

Exercise 10.1 | Q 4 | Page 24

If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴

Exercise 10.1 | Q 5 | Page 24

Given 15 cot A = 8. Find sin A and sec A.

Exercise 10.1 | Q 6 | Page 24

In ΔPQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.

Exercise 10.1 | Q 7.1 | Page 24

If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`

Exercise 10.1 | Q 7.2 | Page 24

If cot θ = `7/8`, evaluate cot2 θ.

Exercise 10.1 | Q 8 | Page 24

If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.

Exercise 10.1 | Q 9 | Page 24

If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`

Exercise 10.1 | Q 10 | Page 24

If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`

Exercise 10.1 | Q 11 | Page 24

If 3 cot θ = 2, find the value of  `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.

Exercise 10.1 | Q 12 | Page 24

If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`

Exercise 10.1 | Q 13 | Page 24

If sec θ = `13/5, "show that"  (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.

Exercise 10.1 | Q 14 | Page 24

If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`

Exercise 10.1 | Q 15 | Page 24

If `cot theta = 1/sqrt3` show that  `(1 - cos^2 theta)/(2 - sin^2  theta) = 3/5`

Exercise 10.1 | Q 16 | Page 24

If `tan theta = 1/sqrt7`     `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`

Exercise 10.1 | Q 17 | Page 24

If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.

Exercise 10.1 | Q 18 | Page 24

if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`

Exercise 10.1 | Q 19 | Page 25

if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`

Exercise 10.1 | Q 20 | Page 25

if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`

Exercise 10.1 | Q 21 | Page 25

if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`

Exercise 10.1 | Q 22 | Page 25

if `sin theta = 3/5  " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`

Exercise 10.1 | Q 23 | Page 25

 if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`

Exercise 10.1 | Q 24 | Page 25

if `sin theta = 3/4`  prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`

Exercise 10.1 | Q 25 | Page 25

if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`

Exercise 10.1 | Q 26 | Page 25

if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`

Exercise 10.1 | Q 27 | Page 25

If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃

Exercise 10.1 | Q 28 | Page 25

If `sin theta = a/b` find sec θ + tan θ in terms of a and b.

Exercise 10.1 | Q 29 | Page 25

If 8 tan A = 15, find sin A – cos A.

Exercise 10.1 | Q 30 | Page 25

If 3cos θ – 4sin  = 2cos θ + sin θ Find tan θ.

Exercise 10.1 | Q 31 | Page 25

If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`

Exercise 10.1 | Q 32 | Page 25

If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`

Exercise 10.1 | Q 33 | Page 25

If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

Exercise 10.1 | Q 34 | Page 26

If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.

Exercise 10.1 | Q 35 | Page 26

In a ΔABC, right angled at A, if tan C = `sqrt3` , find the value of sin B cos C + cos B sin C.

Exercise 10.1 | Q 36.1 | Page 26

State whether the following are true or false. Justify your answer.

The value of tan A is always less than 1.

  • True

  • False

Exercise 10.1 | Q 36.2 | Page 26

State whether the following are true or false. Justify your answer.

sec A = `12/5` for some value of angle A.

  • True

  • False

Exercise 10.1 | Q 36.3 | Page 26

State whether the following are true or false. Justify your answer.

cos A is the abbreviation used for the cosecant of angle A.

  • True

  • False

Exercise 10.1 | Q 36.4 | Page 26

State whether the following are true or false. Justify your answer.

sin θ = `4/3`, for some angle θ.

  • True

  • False

Exercise 10.2 [Pages 41 - 43]

RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.2 [Pages 41 - 43]

Exercise 10.2 | Q 1 | Page 41

Evaluate the following

sin 45° sin 30° + cos 45° cos 30°

Exercise 10.2 | Q 2 | Page 41

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°

Exercise 10.2 | Q 3 | Page 41

Evaluate the following

cos 60° cos 45° - sin 60° ∙ sin 45°

Exercise 10.2 | Q 4 | Page 41

Evaluate the following

sin2 30° + sin2 45° + sin2 60° + sin2 90°

Exercise 10.2 | Q 5 | Page 41

Evaluate the following

cos2 30° + cos2 45° + cos2 60° + cos2 90°

Exercise 10.2 | Q 6 | Page 41

Evaluate the following

tan2 30° + tan2 60° + tan45°

Exercise 10.2 | Q 7 | Page 41

Evaluate the following

`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`

Exercise 10.2 | Q 8 | Page 41

Evaluate the following

`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`

Exercise 10.2 | Q 9 | Page 42

Evaluate the Following

4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°

Exercise 10.2 | Q 10 | Page 42

Evaluate the following:

(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)

Exercise 10.2 | Q 11 | Page 42

Evaluate the Following

cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°

Exercise 10.2 | Q 12 | Page 42

Evaluate the Following

`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`

Exercise 10.2 | Q 13 | Page 42

Evaluate the Following

(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)

Exercise 10.2 | Q 14 | Page 42

Evaluate the Following

`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`

Exercise 10.2 | Q 15 | Page 42

Evaluate the Following

`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`

Exercise 10.2 | Q 16 | Page 42

Evaluate the Following

4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°

Exercise 10.2 | Q 17 | Page 42

Evaluate the Following

`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`

Exercise 10.2 | Q 18 | Page 42

Evaluate the Following

`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`

Exercise 10.2 | Q 19 | Page 42

Evaluate the Following:

`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@  - (5 sin 90^@)/(2 cos 0^@)`

Exercise 10.2 | Q 20 | Page 42

Find the value of x in the following :

`2sin 3x = sqrt3`

Exercise 10.2 | Q 21 | Page 42

Find the value of x in the following :

`2 sin  x/2 = 1`

Exercise 10.2 | Q 22 | Page 42

Find the value of x in the following :

`sqrt3 sin x = cos x`

Exercise 10.2 | Q 23 | Page 42

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º

Exercise 10.2 | Q 24 | Page 42

Find the value of x in the following :

`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`

Exercise 10.2 | Q 25 | Page 42

Find the value of x in the following :

cos 2x = cos 60° cos 30° + sin 60° sin 30°

Exercise 10.2 | Q 26.1 | Page 42

If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`

Exercise 10.2 | Q 26.2 | Page 42

If θ = 30° verify that  `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`

Exercise 10.2 | Q 26.3 | Page 42

If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`

Exercise 10.2 | Q 26.4 | Page 42

f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ

Exercise 10.2 | Q 27.1 | Page 42

If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B

Exercise 10.2 | Q 27.2 | Page 42

If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B

Exercise 10.2 | Q 27.3 | Page 42

If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan   tan B)`

Exercise 10.2 | Q 28.1 | Page 42

If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B

Exercise 10.2 | Q 28.2 | Page 42

If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B

Exercise 10.2 | Q 29 | Page 43

If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.

Exercise 10.2 | Q 30 | Page 43

In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.

Exercise 10.2 | Q 31 | Page 43

In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC

Exercise 10.2 | Q 32 | Page 43

In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.

Exercise 10.2 | Q 33 | Page 43

If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B

Exercise 10.2 | Q 34 | Page 43

If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.

Exercise 10.2 | Q 35 | Page 43

If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.

Exercise 10.2 | Q 36.1 | Page 43

In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C

Exercise 10.2 | Q 36.2 | Page 43

In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B

Exercise 10.2 | Q 37 | Page 43

Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`

Exercise 10.2 | Q 38 | Page 43

If A and B are acute angles such that tan A = 1/2,  tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?

Exercise 10.2 | Q 39 | Page 43

In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.

Exercise 10.3 [Pages 52 - 54]

RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.3 [Pages 52 - 54]

Exercise 10.3 | Q 1.1 | Page 52

Evaluate the following:

`(sin 20^@)/(cos 70^@)`

Exercise 10.3 | Q 1.2 | Page 52

Evaluate the following :

`cos 19^@/sin 71^@`

Exercise 10.3 | Q 1.3 | Page 52

Evaluate the following :

`(sin 21^@)/(cos 69^@)`

Exercise 10.3 | Q 1.4 | Page 52

Evaluate the following :

`tan 10^@/cot 80^@`

Exercise 10.3 | Q 1.5 | Page 52

Evaluate the following

`sec 11^@/(cosec 79^@)`

Exercise 10.3 | Q 2.01 | Page 53

Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`

Exercise 10.3 | Q 2.02 | Page 53

Evaluate cos 48° − sin 42°

Exercise 10.3 | Q 2.03 | Page 53

Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`

Exercise 10.3 | Q 2.04 | Page 53

Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`

Exercise 10.3 | Q 2.05 | Page 53

Evaluate the following :

`tan 35^@/cot 55^@  + cot 78^@/tan 12^@  -1`

Exercise 10.3 | Q 2.06 | Page 53

Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`

Exercise 10.3 | Q 2.07 | Page 53

Evaluate the following :

cosec 31° − sec 59°

Exercise 10.3 | Q 2.08 | Page 53

Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)

Exercise 10.3 | Q 2.09 | Page 53

Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°

Exercise 10.3 | Q 2.1 | Page 53

Show that tan 48° tan 23° tan 42° tan 67° = 1

Exercise 10.3 | Q 2.11 | Page 53

Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 

Exercise 10.3 | Q 3.1 | Page 53

Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°

Exercise 10.3 | Q 3.2 | Page 53

Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°

Exercise 10.3 | Q 3.3 | Page 53

Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°

Exercise 10.3 | Q 3.4 | Page 53

Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°

Exercise 10.3 | Q 3.5 | Page 53

Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°

Exercise 10.3 | Q 3.6 | Page 53

Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°

Exercise 10.3 | Q 3.7 | Page 53

Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°

Exercise 10.3 | Q 4 | Page 53

Express cos 75° + cot 75° in terms of angles between 0° and 30°.

Exercise 10.3 | Q 5 | Page 53

If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?

Exercise 10.3 | Q 6.1 | Page 53

If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`

Exercise 10.3 | Q 6.2 | Page 53

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`

Exercise 10.3 | Q 7.1 | Page 53

Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1

Exercise 10.3 | Q 7.2 | Page 53

Prove that sin 48° sec 42° + cos 48° cosec 42° = 2

Exercise 10.3 | Q 7.3 | Page 53

Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`

Exercise 10.3 | Q 7.4 | Page 53

Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`

Exercise 10.3 | Q 8.1 | Page 53

Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0

Exercise 10.3 | Q 8.2 | Page 53

Prove the following :

`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ -  theta)) + tan (90^@ - theta)/cot theta = 2`

Exercise 10.3 | Q 8.3 | Page 53

Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`

Exercise 10.3 | Q 8.4 | Page 53

Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`

Exercise 10.3 | Q 8.5 | Page 53

Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1

Exercise 10.3 | Q 9.01 | Page 54

Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.

Exercise 10.3 | Q 9.02 | Page 54

Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`

Exercise 10.3 | Q 9.03 | Page 54

Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`

Exercise 10.3 | Q 9.04 | Page 54

Evaluate tan 35° tan 40° tan 50° tan 55°

Exercise 10.3 | Q 9.05 | Page 54

Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)

Exercise 10.3 | Q 9.06 | Page 54

Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°

Exercise 10.3 | Q 9.07 | Page 54

Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`

Exercise 10.3 | Q 9.08 | Page 54

Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`

Exercise 10.3 | Q 9.09 | Page 54

Evaluate: `sin 18^@/cos 72^@  + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`

Exercise 10.3 | Q 9.1 | Page 54

Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`

Exercise 10.3 | Q 10 | Page 54

If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ

Exercise 10.3 | Q 11 | Page 54

If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`

Exercise 10.3 | Q 12 | Page 54

If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)

Exercise 10.3 | Q 13 | Page 54

If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1

Exercise 10.3 | Q 14 | Page 54

If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.

Exercise 10.3 | Q 15 | Page 54

If sin 3θ = cos (θ – 6°) where 3θ and θ − 6° are acute angles, find the value of θ.

Exercise 10.3 | Q 16 | Page 54

If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.

Exercise 10.3 | Q 17 | Page 54

If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.

Exercise 10.4 [Page 55]

RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.4 [Page 55]

Exercise 10.4 | Q 1 | Page 55

Write the maximum and minimum values of sin θ.

Exercise 10.4 | Q 2 | Page 55

Write the maximum and minimum values of cos θ.

Exercise 10.4 | Q 3 | Page 55

What is the maximum value of \[\frac{1}{\sec \theta}\] 

Exercise 10.4 | Q 4 | Page 55

What is the maximum value of \[\frac{1}{\sec \theta}\]

Exercise 10.4 | Q 5 | Page 55

If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]

Exercise 10.4 | Q 6 | Page 55

If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]

Exercise 10.4 | Q 7 | Page 55

If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]

Exercise 10.4 | Q 8 | Page 55

Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]

Exercise 10.4 | Q 9 | Page 55

If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 

Exercise 10.4 | Q 10 | Page 55

If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?

Exercise 10.4 | Q 11 | Page 56

If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 

Exercise 10.4 | Q 12 | Page 56

Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]

Exercise 10.4 | Q 13 | Page 55

Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°. 

Exercise 10.4 | Q 14 | Page 56

Write the value of tan 10° tan 15° tan 75° tan 80°?

Exercise 10.4 | Q 15 | Page 55

If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B

Exercise 10.4 | Q 16 | Page 55

If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\]  find the value of (sin A + cos A) sec A. 

Exercise 10.5 [Pages 56 - 59]

RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.5 [Pages 56 - 59]

Exercise 10.5 | Q 1 | Page 56

If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] 

  • \[\frac{16}{625}\]

  • \[\frac{1}{36}\]

  • \[\frac{3}{160}\]

  • \[\frac{160}{3}\]

Exercise 10.5 | Q 2 | Page 56

If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 
  • \[\frac{a^2 + b^2}{a^2 - b^2}\]

  • \[\frac{a^2 - b^2}{a^2 + b^2}\]

  • \[\frac{a + b}{a - b}\]

  • \[\frac{a - b}{a + b}\]

Exercise 10.5 | Q 3 | Page 56

If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:

  • \[\frac{5}{3}\]

  • \[\frac{5}{6}\]

  •  0

  • \[\frac{1}{6}\]

Exercise 10.5 | Q 4 | Page 56

If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]

  • \[\frac{1}{7}\]

  • \[\frac{3}{7}\]

  • \[\frac{2}{7}\]

  • 0

Exercise 10.5 | Q 5 | Page 56

If 8 tan x = 15, then sin x − cos x is equal to 

  • \[\frac{8}{17}\]

  • \[\frac{17}{7}\]

  • \[\frac{1}{17}\]

  • \[\frac{7}{17}\]

Exercise 10.5 | Q 6 | Page 56

If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 

  • \[\frac{5}{7}\]

  • \[\frac{3}{7}\]

  • \[\frac{1}{12}\]

  • \[\frac{3}{4}\]

Exercise 10.5 | Q 7 | Page 57

If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 

  • \[\frac{7}{25}\]

  •  1

  • \[\frac{- 7}{25}\]

  • \[\frac{4}{25}\]

Exercise 10.5 | Q 8 | Page 57

If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]

  • \[\frac{7}{8}\]

  • \[\frac{8}{7}\]

  • \[\frac{7}{4}\]

  • \[\frac{64}{49}\]

Exercise 10.5 | Q 9 | Page 57

If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?
  • \[\frac{271}{979}\]

  • \[\frac{316}{2937}\]

  • \[\frac{542}{2937}\]

  • None of these

Exercise 10.5 | Q 10 | Page 57

If tan2 45° − cos2 30° = x sin 45° cos 45°, then x

  • 2

  •  −2

  • \[- \frac{1}{2}\]

  • \[\frac{1}{2}\]

Exercise 10.5 | Q 11 | Page 57

The value of cos2 17° − sin2 73° is 

  •  1

  • \[\frac{1}{3}\]

  • 0

  • -1

Exercise 10.5 | Q 12 | Page 57

The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 

  • \[\frac{1}{2}\]

  • \[\frac{1}{\sqrt{2}}\]

  •  1

Exercise 10.5 | Q 13 | Page 57

If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 

  •  1

  •  −1

  •  2

  • 0

Exercise 10.5 | Q 14 | Page 57

If A and B are complementary angles, then

  • sin A = sin B

  • cos A = cos B

  •  tan A = tan B

  • sec A = cosec B

Exercise 10.5 | Q 15 | Page 57

If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =

  • 0

  •  1

  •  −1

  • 2

Exercise 10.5 | Q 16 | Page 57

If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to 

  • 1

  • \[\sqrt{3}\] 

  • \[\frac{1}{2}\]

  • \[\frac{1}{\sqrt{2}}\]

Exercise 10.5 | Q 17 | Page 57

If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 

  • \[\frac{1}{2}\]

  • \[\frac{\sqrt{3}}{2}\]

  • 1

  • \[\frac{1}{\sqrt{2}}\]

Exercise 10.5 | Q 18 | Page 57

If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]

  • \[\frac{4}{7}\]

  • \[\frac{3}{7}\]

  • \[\frac{2}{7}\]

  • \[\frac{1}{7}\]

Exercise 10.5 | Q 19 | Page 58

The value of tan 1° tan 2° tan 3° ...... tan 89° is 

  • 1

  • −1

  •  0

  • None of these

Exercise 10.5 | Q 20 | Page 58

The value of cos 1° cos 2° cos 3° ..... cos 180° is 

  • 1

  • 0

  • −1

  •  None of these

Exercise 10.5 | Q 21 | Page 58

The value of tan 10° tan 15° tan 75° tan 80° is 

  • −1

  • 0

  • 1

  • None of these

Exercise 10.5 | Q 22 | Page 58

The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 

  • 1

  • − 1

  •  2

  •  −2

Exercise 10.5 | Q 23 | Page 58

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 

  •  1

  • −1

  • \[\sqrt{3}\]

  • \[\frac{1}{\sqrt{3}}\]

Exercise 10.5 | Q 24 | Page 58

If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\] 

  • cot2 A

  • cot2 B

  • −tan2 A

  • −cot2 A

Exercise 10.5 | Q 25 | Page 58

If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 

  •  1

  •  0

  •  −1

  • \[1 + \sqrt{3}\]

Exercise 10.5 | Q 26 | Page 58

\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to

  • sin 60°

  • cos 60°

  •  tan 60°

  • sin 30°

Exercise 10.5 | Q 27 | Page 58

\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to 

  • tan 90° 

  • 1

  • sin 45° 

  • sin 0°  

Exercise 10.5 | Q 28 | Page 58

Sin 2A = 2 sin A is true when A =

  •  30°

  • 45°

  •  60°

Exercise 10.5 | Q 29 | Page 58

\[\frac{2 \tan 30°}{1 - \tan^2 30°}\]  is equal to ______.

  • cos 60°

  • sin 60°

  • tan 60°

  • sin 30° 

Exercise 10.5 | Q 30 | Page 58

If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]

  • \[\sin \frac{A}{2}\]

  • \[\cos \frac{A}{2}\]

  • \[- \sin \frac{A}{2}\]

  • \[- \cos \frac{A}{2}\]

Exercise 10.5 | Q 31 | Page 58

If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 

  • 0

  •  3

Exercise 10.5 | Q 32 | Page 58

tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 

  • `4/sqrt3`

  • `4sqrt3`

  • 1

  • 4

Exercise 10.5 | Q 33 | Page 59

The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is

  •  −2

  •  2

  • 1

  • 0

Exercise 10.5 | Q 34 | Page 59

In the following figure  the value of cos ϕ is 

  • \[\frac{5}{4}\]

  • \[\frac{5}{3}\]

  • \[\frac{3}{5}\]

  • \[\frac{4}{5}\]

Exercise 10.5 | Q 35 | Page 59

In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.

 

 

  • \[\frac{12}{5}\]

  • \[\frac{5}{12}\]

  • \[\frac{13}{12}\]

  • \[\frac{12}{13}\]

Solutions for 10: Trigonometric Ratios

Exercise 10.1Exercise 10.2Exercise 10.3Exercise 10.4Exercise 10.5
RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios

Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 10 CBSE 10 (Trigonometric Ratios) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 10 chapter 10 Trigonometric Ratios are Trigonometry, Trigonometric Ratios, Trigonometric Ratios of Some Special Angles, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Proof of Existence, Relationships Between the Ratios, Trigonometry, Trigonometric Ratios and Its Reciprocal, Trigonometry Ratio of Zero Degree and Negative Angles, Trigonometric Ratios in Terms of Coordinates of Point, Angles in Standard Position, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Trigonometric Table, Heights and Distances, Trigonometric Ratios, Application of Trigonometry.

Using RD Sharma Mathematics [English] Class 10 solutions Trigonometric Ratios exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 10 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 10, Trigonometric Ratios Mathematics [English] Class 10 additional questions for Mathematics Mathematics [English] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×