Advertisements
Online Mock Tests
Chapters
2: Polynomials
3: Pair of Linear Equations in Two Variables
4: Quadratic Equations
5: Arithmetic Progression
6: Co-Ordinate Geometry
7: Triangles
8: Circles
9: Constructions
▶ 10: Trigonometric Ratios
11: Trigonometric Identities
12: Trigonometry
13: Areas Related to Circles
14: Surface Areas and Volumes
15: Statistics
16: Probability
![RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios - Shaalaa.com](/images/8193647920-mathematics-english-class-10_6:5809898a5fef45e9a2f7e6b414d392fa.jpg)
Advertisements
Solutions for Chapter 10: Trigonometric Ratios
Below listed, you can find solutions for Chapter 10 of CBSE RD Sharma for Mathematics [English] Class 10.
RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.1 [Pages 23 - 26]
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos theta = 7/25`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sec theta = 13/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cos theta = 12/2`
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
In Fig below, Find tan P and cot R. Is tan P = cot R?
If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴
Given 15 cot A = 8. Find sin A and sec A.
In ΔPQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
If cot θ = `7/8`, evaluate cot2 θ.
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
If 8 tan A = 15, find sin A – cos A.
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.
In a ΔABC, right angled at A, if tan C = `sqrt3` , find the value of sin B cos C + cos B sin C.
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
True
False
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
True
False
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
True
False
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
True
False
RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.2 [Pages 41 - 43]
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Evaluate the following
`2 sin^2 30^2 - 3 cos^2 45^2 + tan^2 60^@`
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
Find the value of x in the following :
`2sin 3x = sqrt3`
Find the value of x in the following :
`2 sin x/2 = 1`
Find the value of x in the following :
`sqrt3 sin x = cos x`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.3 [Pages 52 - 54]
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate cos 48° − sin 42°
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
If sin 3θ = cos (θ – 6°) where 3θ and θ − 6° are acute angles, find the value of θ.
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.4 [Page 55]
Write the maximum and minimum values of sin θ.
Write the maximum and minimum values of cos θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
Write the value of tan 10° tan 15° tan 75° tan 80°?
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
RD Sharma solutions for Mathematics [English] Class 10 10 Trigonometric Ratios Exercise 10.5 [Pages 56 - 59]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
\[\frac{16}{625}\]
\[\frac{1}{36}\]
\[\frac{3}{160}\]
\[\frac{160}{3}\]
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
\[\frac{a^2 + b^2}{a^2 - b^2}\]
\[\frac{a^2 - b^2}{a^2 + b^2}\]
\[\frac{a + b}{a - b}\]
\[\frac{a - b}{a + b}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
\[\frac{5}{3}\]
\[\frac{5}{6}\]
0
\[\frac{1}{6}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
\[\frac{1}{7}\]
\[\frac{3}{7}\]
\[\frac{2}{7}\]
0
If 8 tan x = 15, then sin x − cos x is equal to
\[\frac{8}{17}\]
\[\frac{17}{7}\]
\[\frac{1}{17}\]
\[\frac{7}{17}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
\[\frac{5}{7}\]
\[\frac{3}{7}\]
\[\frac{1}{12}\]
\[\frac{3}{4}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
\[\frac{7}{25}\]
1
\[\frac{- 7}{25}\]
\[\frac{4}{25}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
\[\frac{7}{8}\]
\[\frac{8}{7}\]
\[\frac{7}{4}\]
\[\frac{64}{49}\]
If 3 cos θ = 5 sin θ, then the value of
\[\frac{271}{979}\]
\[\frac{316}{2937}\]
\[\frac{542}{2937}\]
None of these
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
2
−2
\[- \frac{1}{2}\]
\[\frac{1}{2}\]
The value of cos2 17° − sin2 73° is
1
\[\frac{1}{3}\]
0
-1
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
1
2
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
1
−1
2
0
If A and B are complementary angles, then
sin A = sin B
cos A = cos B
tan A = tan B
sec A = cosec B
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
0
1
−1
2
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
1
\[\sqrt{3}\]
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
\[\frac{1}{2}\]
\[\frac{\sqrt{3}}{2}\]
1
\[\frac{1}{\sqrt{2}}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
\[\frac{4}{7}\]
\[\frac{3}{7}\]
\[\frac{2}{7}\]
\[\frac{1}{7}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
1
−1
0
None of these
The value of cos 1° cos 2° cos 3° ..... cos 180° is
1
0
−1
None of these
The value of tan 10° tan 15° tan 75° tan 80° is
−1
0
1
None of these
The value of
1
− 1
2
−2
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
1
−1
\[\sqrt{3}\]
\[\frac{1}{\sqrt{3}}\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
cot2 A
cot2 B
−tan2 A
−cot2 A
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
1
0
−1
\[1 + \sqrt{3}\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
sin 60°
cos 60°
tan 60°
sin 30°
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
tan 90°
1
sin 45°
sin 0°
Sin 2A = 2 sin A is true when A =
0°
30°
45°
60°
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
cos 60°
sin 60°
tan 60°
sin 30°
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
\[\sin \frac{A}{2}\]
\[\cos \frac{A}{2}\]
\[- \sin \frac{A}{2}\]
\[- \cos \frac{A}{2}\]
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
1
0
3
4
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
`4/sqrt3`
`4sqrt3`
1
4
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
−2
2
1
0
In the following figure the value of cos ϕ is
\[\frac{5}{4}\]
\[\frac{5}{3}\]
\[\frac{3}{5}\]
\[\frac{4}{5}\]
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
\[\frac{12}{5}\]
\[\frac{5}{12}\]
\[\frac{13}{12}\]
\[\frac{12}{13}\]
Solutions for 10: Trigonometric Ratios
![RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios - Shaalaa.com](/images/8193647920-mathematics-english-class-10_6:5809898a5fef45e9a2f7e6b414d392fa.jpg)
RD Sharma solutions for Mathematics [English] Class 10 chapter 10 - Trigonometric Ratios
Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 10 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 10 CBSE 10 (Trigonometric Ratios) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 10 chapter 10 Trigonometric Ratios are Trigonometry, Trigonometric Ratios, Trigonometric Ratios of Some Special Angles, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Proof of Existence, Relationships Between the Ratios, Trigonometry, Trigonometric Ratios and Its Reciprocal, Trigonometry Ratio of Zero Degree and Negative Angles, Trigonometric Ratios in Terms of Coordinates of Point, Angles in Standard Position, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Trigonometric Table, Heights and Distances, Trigonometric Ratios, Application of Trigonometry.
Using RD Sharma Mathematics [English] Class 10 solutions Trigonometric Ratios exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 10 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 10, Trigonometric Ratios Mathematics [English] Class 10 additional questions for Mathematics Mathematics [English] Class 10 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.